Page Not Found
Page not found. Your pixels are in another canvas.
A list of all the posts and pages found on the site. For you robots out there is an XML version available for digesting as well.
Page not found. Your pixels are in another canvas.
About me
This is a page not in th emain menu
Published:
This post will show up by default. To disable scheduling of future posts, edit config.yml
and set future: false
.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Short description of portfolio item number 1
Short description of portfolio item number 2
Published in Journal 1, 2015
This paper is about the number 3. The number 4 is left for future work.
Recommended citation: Your Name, You. (2015). "Paper Title Number 3." Journal 1. 1(3). http://academicpages.github.io/files/paper3.pdf
Published in IEEE Intelligent Systems, 2020
Guanyu Lin, Feng liang, Weike Pan, Zhong Ming
Download here
Published in In Proceedings of the ACM Web Conference 2023, 2023
Accurate user interest modeling is vital for recommendation scenarios. One of the efective solutions is the sequential recommendation that relies on click behaviors, but thisis not elegant in the video feed recommendation where users are passive in receiving the streaming contents and return skip or no-skip behaviors. Here skip and no-skip behaviors can be treated as negative and positive feedback, respectively. With the mixture of positive and negative feedback, it is challenging to capture the transition pattern of behavioral sequence. To do so, FeedRec has exploited a shared vanilla Transformer, which may be inelegant because head interaction of multiheads attention does not consider diferent types of feedback. In this paper, we propose Dual-interest Factorization-heads Attention for Sequential Recommendation (short for DFAR) consisting of feedback-aware encoding layer, dual-interest disentangling layer and prediction layer. In the feedback-aware encoding layer, we frst suppose each head of multi-heads attention can capture specifc feedback relations. Then we further propose factorization-heads attention which can mask specifc head interaction and inject feedback information so as to factorize the relation between diferent types of feedback. Additionally, we propose a dual-interest disentangling layer to decouple positive and negative interests before performing disentanglement on their representations. Finally, we evolve the positive and negative interests by corresponding towers whose outputs are contrastive by BPR loss. Experiments on two real-world datasets show the superiority of our proposed method against state-of-the-art baselines. Further ablation study and visualization also sustain its efectiveness. We release the source code here: https://github.com/tsinghua-fb-lab/WWW2023-DFAR.
Recommended citation: Guanyu Lin. (2023). "Dual-interest Factorization-heads Attention for Sequential Recommendation." In Proceedings of the ACM Web Conference 2023 . https://dl.acm.org/doi/pdf/10.1145/3543507.3583278
Published:
This is a description of your talk, which is a markdown files that can be all markdown-ified like any other post. Yay markdown!
Published:
This is a description of your conference proceedings talk, note the different field in type. You can put anything in this field.
Undergraduate course, University 1, Department, 2014
Look for teaching assistant in machine learning.
Workshop, University 1, Department, 2015
Look for teaching assistant in machine learning.